Wumpus y arquero
Conjunto de reglas:
R0=Si A = (1 , 1)entonces¬ W =(1 , 1) Λ ¬ H =(1 ,
1) Λ ¬ B =(1 , 1) Λ¬ He =(1 , 1) Λ ¬ O =(1 , 1) Λ ¬ W =(1
, 2) Λ ¬ W =(2 , 1) Λ ¬ H = (1 , 2) Λ ¬ H =(2 , 1) Λ V = (1
, 1)
R1=Si A = (2 , 1)entonces B = (2 , 1) Λ ( H = (3 ,
1)∨ H
= (2 , 2) ) Λ A = (1 , 1)
R2=Si A = (1 , 2)entonces He = (1 , 2) Λ V = (2 ,
2) Λ W = (1 , 3) Λ V = (1 , 1)
R3=Si A = (2 , 2)entonces V = (2, 2) ΛHe = (2 , 3)
ΛB = (3 , 2) ΛB = (2 , 1)ΛHe = (1 , 2)
R4=Si A = (2 , 3)entonces He = (2 , 3) Λ B = (2 ,
3) Λ W = (1 , 3) Λ O = (2 , 3) ΛJ = -1
R5=Si A = (3 , 2)entonces B = (3 , 2)
Λ H = (3 , 1) Λ ( H = (3 , 3)∨ H = (4 , 2) ) Λ A = (2
, 2)
Atributos:
A = (1 , 1)
B = (2 , 1), (3 , 2), (4 , 1), (4 , 3), (3 , 4), (2 , 3)
H = (3 , 1), (3 , 3)
W = (1 , 3)
He = (1 , 2), (1 , 4), (2 , 3)
O = (2 , 3)
V = (2 , 2), (2 , 4), (4 , 2), (4 , 4), (1 , 1)
J = -1
Encadenamiento hacia adelante:
-Base – datos inicial
A = (1 , 2)
A = (2 , 2)
Encadenamiento hacia atras:
- Objetivol: W
- Pila =
W Reglas 2 , 4
- Regla 2
Primera premisa: A = (1 , 2) (¬∃ BC y¬∃
regla para “A(1 , 2)”)
A = (2 , 2)
B:C (A = (2 , 2)) Fallo regla 2
- Regla 3: Se cumplen todas las premisas
Se dispara la regla 3, concluyendo W =(1 , 3)